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Abstract 
 

An approximate theory is given for the excitation of oscillations in an electric oscillatory 
system without explicit sources of electric or magnetic forces, with the aid of periodic 
variations in the system's parameters. The theory is based on general Poincaré methods 
developed earlier for finding periodic solutions of differential equations. Detailed discussion 
is given of special cases of such excitation with sinusoidal variation of self-induction and 
capacitance in an oscillatory system having one degree of freedom, and also with self-
inductance variation in a regenerated system. Attempts to generate oscillations by a 
mechanical variation of parameters in systems with and without regeneration are described. 
These experiments confirm the possibility of such, excitation, in accordance with the theory. 

The phenomenon of the excitation of oscillations by periodic variation of the parameters of 
an oscillatory system, 1, 5, has currently gained renewed interest in connection with 
producing such excitation in electric oscillatory systems. Although the possibilities of such 
"parametric excitation" were already indicated in the past 3, 6, and the phenomenon 
undoubtedly plays a considerable though not often perceived role, e.g. in the usual 
generation of current in electrical engineering only in the last few years was the effect really 
appreciated and began to be systematically studied. Thus, attempts have been described 8, 
9 at exciting oscillations in electric systems in the region of acoustic frequencies by periodic 
magnetization of an iron core of a self-inductor. Using the changes occurring during rotor 
rotation in the self-induction formed by successive combination of two phases of a stator 
and two phases of a rotor of a three-phase generator, Winter-Guenther 10 also achieved 
parametric excitation of oscillations. Experiments were recently reported 11 on the 
excitation of oscillations by mechanical periodic variation of a magnetic circuit of a self-
inductor in a system. 

In 1927 we began theoretical and experimental work on the problem (at NIIF in Moscow 
and in TsRL) and first obtained and investigated oscillations (up to frequencies of the order 
of     Hz), by periodic changes in the magnetization of an iron core of a self-inductor 12. 



The phenomenon was later studied by us at LEFI with mechanical variation of the 
parameters 12, 13, but publication was delayed until now for patent considerations. As 
indicated in our communication in this journal, vol. 3, no. 7, 1933 apart from the parametric 
excitation of oscillations by mechanical variation of self-induction (at the beginning of 1931) 
we recently achieved at LEFI parametric excitation by mechanical variation of the 
capacitance 16. 

As regards the theory of parametric excitation the literature already contains the necessary 
basis for a full analysis of the appearance of oscillations. As is known the question leads to 
the investigation of so-called "unstable" solutions of linear differential equations with 
periodic coefficients, which from the mathematical point of view have been studied in 
sufficient detail both generally and in application to the present proclaim. (refs. 2, 3, 14, 15). 
However, the theory taking these equations as linear cannot provide information on the 
stationary amplitude, its stability, the establishment process, etc. adequate treatment of 
which is only possible with the aid of nonlinear differential equations. Winter-Guenther and 
Watanabe limit themselves merely to a simplified derivation of the conditions for the 
appearance of oscillations, based on consideration of the corresponding linear differential 
equation, and leave completely untouched the questions of the stationary amplitude. 
However, these questions are no less basic than the very problem of the appearance of 
oscillations, and must be answered not only for a full description of the whole phenomena 
but also to enable calculations in practical applications of the phenomenon. 

In the present paper we give an approximate theory of the whole process of parametric 
excitation of oscillations, starting from Poincare’s method of finding periodic solutions of 
differential equations.  The cases of periodically varying self-induction and capacitance are 
considered, and the results of some work done in 1931 and 1932 at LEFI are reported. 
Further experimental and theoretical material is given in the following papers by V.A. 
Lazarev, V.P. Gulyayev, and V.V. Migulin. 

The results of a more detailed experimental investigation of parametric excitation by 
periodic variation of the magnetisation of the core of a self-inductor, carried out at TsRL, will 
be reported elsewhere. 

In the present paper we shall confine ourselves to considering in the first approximation 
what is perhaps the most important case of parametric excitation, when the frequency of 
the parameter variation is roughly twice the mean resonance of the system. The methods 
used here make it possible, however, to give a solution of the problem for other cases as 
well, and also to find further approximations. A number of problems associated with this 
will be considered at a later date. 

 

Theoretical Part 
 

1. Аppearanсе of oscillations is during parametrіс excitation. Some general 
considerations and соnсlusions. 

As we have shown earlier 13,16, starting from energy considerations it is easy to account for 
the physical aspects of the excitation of oscillations by periodic (stepwise) variation of the 



capacitance of an oscillatory system not containing any explicit sources of magnetic or 
electric fields. 

We shall, briefly repeat this argument for the case of variation of the self-inductance.  

Suppose that a current   is flowing in an oscillatory system consisting of a capacitance  , 
ohmic resistance  , and self-inductance  , at some instant of time which we shall take as 
the starting instant. At this moment we change  , by,   , which is equivalent to increasing 

the energy by 
 

 
      The system is now left to itself. After a time equal to 

 

 
 of the period of 

the tuned frequency of the system, all the energy transforms from magnetic into 
electrostatic. At this moment, when the current falls to zero, we return the self-induction to 
its original value, which can evidently be done without expending work and again we leave 

the system alone. After the next 
 

 
 period of resonance oscillations the electrostatic energy 

transforms fully into magnetic and we can begin a new cycle of variation in  . If the energy 
put in at the beginning of the cycle exceeds that lost during the cycle, i.e. if 

 

 
      

 

 
   

 

 
 

or 

  

 
    

where   is the logarithmic decrement of the natural oscillations of the system, then the 
current will be larger at the end of each cycle than at the beginning. Thus, repeating these 
cycles, i.e. changing I with a frequency twice the mean resonance frequency of the system in 
such a way that 

  

 
    

we can excite oscillations in the system without any emf acting on it, no matter how small 
the initial charge. Even in the absence of the practically always present random inductions 
(due to power transmission lines terrestrial magnetic field, atmospheric charges) we can in 
principle always find random charges in the circuit on account of statistical fluctuations. 

Even this very rough rather qualitative argument shows that the two prerequisites for the 
arisal of oscillations are:  

1. A certain relationship between the parameter-variation frequency and the 
"mean" resonance frequency of the system. 

2. A certain relationship between the relative change in the parameter (depth 
of modulation) and the mean logarithmic decrement of the system. 

More detailed analysis of the problem leads to linear differential equations with periodic 
coefficients. Thus, in the case of a change in the system's capacitance according to the law: 
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we have the following equation for     ∫     : 
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which by the transformation 
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can be brought to the form 
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(5) 

 

Thus mathematically the problem reduces in this case to a simple linear second-order 
differential equation (4) with periodic coefficients, known as a Mathieu equation 14, 15.  
Many other problems lead to equations of this type, in astronomy, optics, elasticity theory, 
acoustics, and so on. From the mathematical point of view, they have been well investigated 
by Mathieu, Hill, Poincaré, and others. 

 

Solution of eq. (4) may be put in the form 

      
            

         

(6) 

where       is a periodic function with period            

 

Putting this in (3), we obtain for  : 

      
                  

              



(7) 

which shows the problem of excitation of oscillations reduces to finding the conditions 
under which the amplitude   will constantly increase. From (17) 

* Translator's note: (7) 

we see that this will happen when the absolute magnitude of   is greater than  .  

The condition of parametric excitation is thus closely connected with the magnitude of  , i. 
e. with the characteristic exponent of the solution of Mathieu eq. (4). The dependence of   

on the parameters of this equation   and   
   

 
 may be 14 qualitatively represented 

graphically (Figure 1) isolating on the    
   

 
  plane individually the regions within which   

has a real part. Figure 1 shows that these regions, which are the regions of the "unstable" 

solutions of (4), lie around 
   

 
 values of 1, 2, 3, etc. In the presence of damping, i.e. for eq. 

(2), these instability regions are strongly decreased (shaded areas in Figure 1). 

 

Figure 1: Instability regions (after Andronov and Leontovich 14) 

 

Using the method of ref: 3 and 4, we can determine approximately the boundaries of these 

regions. Thus the boundaries of the first instability region (around the value  
   

 
  ), are 

given to within    by the curves 
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This means that with given   and   and with 
   

 
 values satisfying the inequalities 

√   √
  

 
        

   

 
  √   √

  

 
     

(9) 

the solution of (2) is "unstable". 

To determine the second "instability" region (around 
   

 
  )  we must allow for    terms. 

In this case 14. 
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(10) 

so that the width of the region decreases with its order   as   . 

Conditions (9) and (10) contain the following additional conditions. 

For the first instability region: 

  

 
               

(11) 

and for the second 
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(12) 

As can be seen from (11) and (12) the condition for parametric excitation is considerably 
more difficult to satisfy when the system is approximately tuned to the frequency of the 
parameter variation than when the system is tuned to half of this frequency, because with a 
given damping it then requires a much greater depth of modulation   of the parameter. 
The conditions for parametric excitation are even more difficult for frequency ratios 
   

 
      etc. Therefore the case of 

   

 
   is of the greatest practical interest, and the 

present investigation is devoted almost entirely to this case. 

 

The problem of the conditions for the appearance of oscillations is thus determined by (9) 
and (11). These relationships indicate what conditions the damping must satisfy for 
oscillations to arise following variation of a parameter, and also show within what limits we 
can vary the resistance of the system (load) or detune the system from exact parametric 
resonance without eliminating the possibility that oscillations will arise. 

However, these relationships cannot tell us if a stationary oscillation amplitude will be 
established, and what will be the value of this amplitude. In point of fact, being a linear 
equation, the starting eq. (2) cannot give an answer to this question. In other words, if the 
system really obeyed this equation at all times then when condition (9), was observed the 
amplitude of the oscillations would increase without limit. 



Thus a linear system cannot serve as an A-C generator. For a stationary amplitude to be set 
up in a system, the latter must obey a nonlinear differential equation. Eq. (2) considered by 
us is only an approximation for a certain finite amplitude interval; here it retains full 
significance and permits us to solve the problem about the appearance of oscillations. 

The experiments described below confirm that the phenomenon occurs precisely in this 
way. If nonlinearity is not introduced into the system, the following picture will be observed 
when the system's parameters are periodically varied. As soon as the conditions for 
excitation are observed current appears in the circuit, whose amplitude shows a continuous 
increase. 

In our experiments this current increase led eventually to breakdown of the capacitor or 
leads insulation, thus ending the test. To obtain a stationary state we included in the system 
a conductor having a nonlinear characteristic e.g. a coil with an iron core, an incandescent 
lamp, etc. Mathematically speaking, as soon as we add to the system 

e.g. a coil with an iron core the equation becomes 

      

  
     

        

  
 ∫         

where the nonlinear dependence between the current and magnetic flux in the circuit 
      is some preset function of  , e.g. in the form of a power series. 

Since we are after a theory of the observed phenomena, we want to investigate precisely 
such nonlinear equations; mathematically, we are faced with a twofold problem: we must 
find the conditions under which the system's equilibrium becomes unstable (condition for 
the excitation of oscillations), and we must determine and examine the properties of the 
periodic solutions of this equation (the stationary amplitude, conditions for its stability, etc. 
). In the following section we shall consider these problems on a number of examples. 

 

Formulation of the problem for special cases 
 

We shall formulate mathematically the problem of exciting oscillations by periodic variation 
of the parameters of an oscillatory system for several special cases. We begin with the 
following simple example. Consider an oscillatory system with a total ohmic resistance  , 
made up of a capacitance   and two self-inductors. Let the self-inductance of one of the 
coils be a certain preset harmonic function of time: 

                   

while the second coil is a choke with a split iron core having very small hysteresis losses, so 
that the dependence between the magnetic flux through this coil and the current in it will 
be given by some single-valued function   ( ), e.g. in the form of a polynomial of    order 
with respect to  . 

As the simplest case we assume that: 

                      

(13) 



The instantaneous magnetic flux in the circuit is then 

            

(14) 

 and consequently the differential equation for the problem can be written in the form: 

 

  
[          ]      

 

 
 ∫        

(15) 

whence, putting 

∫         

and differentiating, we obtain: 
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or, taking (13) into account, we have: 

(                      ̇        ̇)  ̈                   ̇  
 

 
     

(16) 

The problem of parametric excitation thus leads to a nonlinear second order differential 
equation with periodic coefficients, which cannot be solved in the general form. However, 
when (1)    and the variable (q-dependent) part of        are small relative to       , and 
(2) the natural "mean" logarithmic decrement of the circuit is small in comparison with 
unity, this equation can be reduced to the form 

 ̈                

(17) 

in which   is a 'small' parameter of the equation. We can now apply Poincaré's methods to 
find the periodic solutions. 

In point of fact, we transform eq. (16). 

Introducing a new time scale: 

       

and putting: 
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(18) 

 

we obtain in place of (16): 
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(19) 

 

According to our assumptions           and   are all small in comparison with unity. 

This condition can also be expressed in a slightly different way denoting by the largest of 
these values (in absolute magnitude), in such a way that: 

 

 
 

  

 
 

  

 
 

 

 
 

and 

 

 
 

should be smaller than unity, where 

    

We can then put 
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(20) 

so that (19) can be written in the form: 
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(21) 

Here, as can be seen from (20),    ̇        is a periodic function of   with period  .  

Consequently, we come to the conclusion that in this case considered the problem of 
exciting oscillations by periodic variation of the self-inductance of an oscillatory system 
reduces to solving an equation of the type of (21), to which we can apply methods 
employed in our papers 17, 18 “On resonance of the     kind". 

Before passing to an approximate solution of this equation vie shall consider sole other 
cases of parametric excitation with which we dealt in experiments and the theory of which 
leads to the same differential equation. 

When the capacitance changes sinusoidally, e.g. 

according to 

 

 
 

          

  
 

and the system contains a choke with the above-considered relationship between the flux 
and the current, we have the equation: 
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or, introducing the notation of (18): 
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whence we have again: 
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Where 
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and 
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(2  ) 

 

Further, we shall consider the case of changing self-induction in a regenerated system. We 
take a usual tube network with feedback and an oscillatory grid circuit 

 



 

Figure 2: Circuit of the regenerative system 

 

For the oscillatory circuit we have the following differential equation: 
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(22) 

Here,  

            

where    is the self-inductance coefficient of the feedback coil and     as in the case 
considered above, is the constant part of the periodically varying self-inductance. 

Thus here 

   
  

       
 

For a tube with very low penetration factor    may be regarded as a function only of the grid 

voltage, and may be represented as, e.g., an      order polynomial in  . We shall confine 
ourselves to the simplest case, i. e. when : 

                         

(23) 

Putting 
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we have 

             ̈                ̇                        
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whence we again arrive at eq. (21), where 
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and: 
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(2  ) 

As our last example we shall take a system consisting of an oscillatory circuit coupled 
inductively with an aperiodic circuit. The mutual induction between the two will be varied. 
This system corresponds in principle to the apparatus for periodic variation of self-induction, 
described in the experimental part. 

The differential equations for the problem can in this case be written: 
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At      this system of equations can be replaced by: 
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We shall consider this equation more closely for two special cases.  

A) 

          

                 

             
      

  

In this case we have: 
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Thus here 
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Comparing these expressions with (20), we see that they differ only by the presence of 
terms containing        and       , which (as will be seen later) do not play any part in the 
first approximation during the finding of the 'zeroth" solution.  

B) 

                  

                

            
       

  

Since in this case 

  

  
 

  
 

   
              

eq. (15) is reduced to exactly the same form as eq. (15). 

 

Finding the periodic solutions of e q. (21) 
 

As already mentioned, in finding the solutions of (21) we shall use the methods developed 
in refs. 17 and 18. 

Using this, we can by substituting 
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(24) 

replace eq. (21) by a system of two first-order equations: 
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Here 
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(21) 

and 
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are given by (20), in which   and  ̇ are expressed in terms of   and   according to (24). 

To find the values             , which are the first approximations to the solution of our 
equations by the so-called "zeroth" solution, we must solve the following system of 
equations: 
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On the basis of (21), this system is identical with: 
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For the solutions obtained in this way to be stable, it is necessary that 
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Here 
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and the symbols *
  

  
+ etc. mean that 

  

  
 etc. are taken for      ,      ,      . Since 
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etc., and similarly 
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then conditions (28) and (30) reduce to: 
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We shall now apply the scheme of calculation to the special cases considered. If the self-
induction is varied harmonically we have: 
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(31) 

and therefore eqs. (26) assume the form: 
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where          is the square of the amplitude of parametrically excited oscillations. 

From these equations it follows that either 
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To find out which of these values are physically possible under the conditions in question, 
we turn to the stability conditions (28) and (29). 

Since in the case under consideration: 
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we obtain, on the basis of (23) and (29), the following stability conditions. 

In the case             

    

(3  ) 
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and in the case          
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Condition (36,), or the condition (37) identical with it is always satisfied. Conditions (36) and 

(27。) have the following, consequences: 

In the first place, it follows from (36) that the resting state of the oscillatory system will be 
unstable only if 
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or in other words, if 
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Thus (36) is the condition for the appearance of oscillations during harmonic variation of a 
parameter. 



If it is satisfied then a and b cannot both be zero, and the possible values of the stationary 
amplitude are obtained from (34), i.e. they are given by 
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When (36) is satisfied, the root is real and we have two possible values for   . The stability 

condition (37) tells us which sign of the root to choose. In point of fact taking (32) and (೨೭) 
into account, we can write this last condition in the form: 
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whence we see that the sign of the root in (34) is the same as the sign of    

At      we consequently have: 
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while at     : 
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Thus, when condition (36) is observed, and the system is tuned so that: 
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and 
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we can, by periodic variation of the self-induction with frequency     excite in a system 
tuned approximately to frequency   oscillations having frequency   and a stationary 
amplitude which will be given by (40) or (40). 

As can be seen from (41) and (41), the theory in the first approximation limits detuning   
only from one side, i.e. it is also possible to obtain stable amplitudes outside the   interval 
defined by the condition for the appearance of oscillations. In other words, the 
parametrically excited oscillations "persist". To see how far this "range of persistence' 



(which can also be observed experimentally) extends, we cannot use the approximate 
expressions for the amplitude. To obtain an answer to this and related questions we can no 
longer confine ourselves to the "zeroth" approximation, but must include the influence of 
terms containing   on the amplitude of the main harmonic and also the role of overtones. It 
may be noted that the zeroth solution leads to analogous results for the case (analysed in 
the paper by W.P. Gulyayev and W.W. Migulin) in which the relationship between the flux 
and current in the limiting choke is given by an inverse tangent curve”. 

We shall consider more closely the character of the dependence of the amplitude of excited 
oscillations on the magnitudes which affect it. Figures 3 and 4 show the variation of    with 
the detuning  ; these may be called heteroparametric resonance curves. It is easy to see 
that these curves are fundamentally different from the usual resonance curves and from 
curves of resonance of the second kind. 

Figure 3 shows that, as long as 
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there are no appreciable oscillations in the system. 

Parametric oscillations appear at 
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beginning from very small amplitudes and increase when   is increased further. 

   rises linearly until at a certain value 
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the oscillations suddenly stop. With the reverse course of detuning, oscillations appear 
already at 
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and then decrease with a further decrease in   until, at 
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   again becomes zero. Thus a persistence loop exists only on one side 



 

As may be seen from Figure 4, at      we have the opposite picture:    increases with 
decreasing    and the persistence loop is at      The maximum value of    within the 
region in which oscillations appear is 
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i.e. it is inversely proportional to   . 

Analogous results are obtained if the capacitance is subjected to harmonic variation. In this 
case 
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(42) 

 

Comparing the terms with       and       with the corresponding terms of (31) we see that 
they are obtained from the latter by putting           for  . Thus all conclusions obtained 
for the problem with periodic variation of self-inductance can be extended directly to the 
case of capacitance variation. 

In particular, in the case of the capacitance the boundaries of parametric excitation are 
expressed by: 

* Experiments show (see the paper by W. A. Lazarev) that both cases may be realized in 
practice. 
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which is identical with (38) with accuracy to 
  

 
. 

So far we considered parametric excitation of an oscillatory system without regeneration. 
When the system is regenerative we encounter a whole series of interesting features, which 
will be examined in closer detail in the following section. 

 

Parameter variation in a regenerative system 
 

Since in this case after substituting (24) into (20) we obtain 
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eqs. (27) and (27) for a and b assume the following form: 
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so that we have either 
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or 
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To explain the physical conditions necessary for the existence of one or other of these 
solutions, we turn to the stability conditions. 

Since in this case 
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the conditions (28) and (29) assume the following form. 
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and for         
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Here R denotes   √(
  

 
)     

Some conclusions can now be drawn from these relationships. In the first place, from (49) 
апd (49) it follows that if      , i.e. when the system is not self-excited (cf. (36), parametric 
excitation is possible only when 

  

 
        

(51) 

Comparing this with formula (36) for a non-regenerated system, we see that instead of 28 
we have here a smaller quantity      . Regeneration thus makes it possible to excite 
oscillations even when the given depth of modulation r is insufficient to satisfy condition 
(36). This conclusion underlies some of the experiments described below. 

If (51) is obeyed, then the state of the system at       and       is unstable. If periodic 
motion is established, the state is given by (47). It follows from (50) and (50) that this state 



is stable only if at the same time      and      . Thus we come to the conclusion that 
the amplitude of stationary periodic vibrations is expressed by the formula 
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This is valid both for       (no self-excitation) and for       (self-excited system). We 
shall consider the case of       first. The condition for the reality of   coincides with the 
condition for parametric excitation (51). This means that, as in autoparametric excitation, 
the "persistence" phenomenon is here absent under the "soft" excitation regime. 

If we further compare (47) with the corresponding formula for the oscillation amplitude 
with autoperametric excitation 18: 
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(52) 

we see that the two formulas are fully analogous and practically coincide at small ^م. Thus 
the heteroparametric resonance curves in this case are quite similar to the autoparametric 
resonance curves (resonance of the second kind) considered earlier 17, 18, the external 
force being here replaced by the depth of modulation m. As can be seen from Figure 5 
showing the heteroparametric resonance curve calculated by (47), when the amplitude is 
limited by a nonlinear resistance the resonance curve differs considerably from the 
heteroparametric resonance curve when the amplitude is limited by a nonlinear self-
inductance (Figures 3 and 4). 

 

 



Figure 5: Theoretical heteroparametric resonance Curve in a regenerative system 

 

In the case of parameter variation in a self-excited system          we come to the 
following conclusions. In the first place, from the very existence of a stable periodic solation 
(47) it follows that when a self-oscillatory system is subjected to heteroparametric action we 
encounter the phenomenon of forced synchronization ("frequency entrainment"). 
Moreover, since the reality of   is determined at       only by reality of the root we have 
the following inequalities for the “entrainment region": 

 

 
      

 

 
 

(53) 

so that this region is greater than the region of excitation in a system without self-excitation 
(51). Note that om both sides of the entrainment region, where the periodic process is 
absent, auto-oscillations become very much weaker and, when the amplitude of the action 
is sufficiently large, are completely 'damped out'. An approximate theory of this 
phenomenon, analogous to the phenomenon of asynchronous damping will be given 
elsewhere. 

 

Experimental Part 

 

To confirm the possibility of exciting electric oscillations in an oscillatory system merely by 
periodic variation of the system’s parameters, without the introduction of any emf's, we 
first carried out the following experiment. As we saw above such excitation can only be 
expected if 
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where   is the relative change in the parameter (its so-called depth of modulation), and   is 
the mean logarithmic decrement of the system. We must therefore provide a sufficiently 
effective method of varying the parameter and have a system with small E. Since, moreover, 
the maximum power of parametrically excited oscillations is 

  
 

 
     

then to obtain any appreciable power at easily realizable frequencies       of parameter 
variation, the capacitance   must be fairly large capable of withstanding high voltages. Since 
it is relatively difficult to obtain under laboratory conditions a variable capacitance of the 
required value permitting sufficiently large depths of modulation at the necessary high 
frequencies, we chose instead self-inductance as the periodically varied parameter. From 
the various possibilities we chose at first the following.  If a conductor (in the simplest case a 
closed loop) is introduced into the variable field of a self-inductor   then owing to the eddy 
currents induced in the conductor the magnetic field energy (and hence also effective  ) will 
be decreased. Starting from this basis, to vary the effective self-inductance precisely and 
with the required frequency we used the apparatus shown in Figures 6-8. The variable self-



inductor consisted of two groups of flat coils (7 in each group; Figure 6), mounted on two 
parallel plates along the periphery of two parallel circles so that a narrow gap was left 
between facing coils. A metal rotatable disk was placed in this gap, having 7 tooth-like cut-
outs" along its rim (Figure 7) spaced out so  

* Translator's note: This is rather deceptive. Further description suggests rather a kind of 
circular saw with 7 teeth. 

that when the disk was rotating the tooth centers corresponded at certain moments to the 
centers of the coils. Thus the inductance was here varied periodically by the teeth 
alternately entering and leaving the coils' field as the disk was clade to rotate Taking the 
self-inductance assume respectively minimum and maximum values. Since such a disk 
(which can be made, for example, from duralumin) permits very high speeds (in our 
experiments the peripheral velocity reached up to 220 m/sec), the frequency of the 
parameter variation could be very high (1700 - 2000 per second), obtaining oscillations with 
sufficient power. Split iron cores were fitted into the coils to increase the self-inductance 
and concentrate the field between the coils.  

 

 

Figure 6 



 

Figure 7 

 

Figure 8 

 

In our first experiments on exciting oscillations by periodic variation of self-inductance as 
described above (at the beginning of 1931) we made use of the principle of regeneration 



with an electron tube to satisfy the condition for excitation, because our first coil system 
had an excessive resistance and   was considerably greater than     , while the depth of 
modulation of the self-inductance measured from determinations of the resonance 
frequency of the system in the two extremal positions of the metal disk (teeth in the field of 
the coils and teeth outside this field) was only     , i.e. in was smaller than        . 

To eliminate any explicit currents and potentials in the oscillatory circuit in the initial state, 
we chose a regeneration circuit with parallel supply shown in Figure 9. Here the feedback 
occurred through capacitance   , and could be adjusted smoothly by changing   . The 
oscillatory circuit consisted of the above-described mechanically varied self-inductance   , 
an additional self-inductor          , and a Hartmann and Braun variometer 

 

* Translator's note: Spelling uncertain 

 

for coarse tuning, permitting variation from      to        . The 

 

* Translator's note: Sic (?) 

 

capacitance of this circuit consisted of a fixed component    (7O, OOO cm) and a variable 
capacitor    (max. 11, 2O0 cm) connected in parallel for fine tuning. Not counting the losses 
introduced by the disk, the total ohmic resistance of the circuit was 90 ohm. The distance 
between coils (gap width) was 5 mm, and the duralumin disk was 3 mm thick. A "Mikro" 
type tube was used, with an anode voltage of 240 v. The disk was mounted on an axis made 
to rotate by a motor geared up in a ratio of 1: 10. of the type of V.P. 

Vologdin's high frequency machines*. When the motor speed was 1400-1500 rpm 

 

* Translator's note: ? 

 

(disk revolutions 14,000 - 15,000 per minute), we obtained with the 7-tooth disk a 
frequency in of self-inductance variation equal to 1630-1750 sec-1.* 

The experiments were conducted as follows. First, with the disk stationary (or rotating with 
a speed not corresponding to the condition for excitation) we selected the tube regime so 
that, at sufficient feedback (adjusted with the aid of   ) and tuning of the system to half the 
parameter variation frequency, we obtained at least 'soft' self-excitation of auto oscillations. 
The feedback was then reduced so that no auto-oscillations occurred in the whole tuning 
range. The disk was next set in motion. When the full disk speed was reached oscillations 
appeared with a frequency exactly half that of the self-inductance. When the circuit's 
capacitance (i.e. the system's resonance frequency) was changed smoothly, the frequency 
of the oscillations stopped. As will be seen from what follows, here we were in fact dealing 
with heteroparametric excitation of oscillations and not with excitation of  

"M.I.Rzyankin participated in the construction, preparation, assembly and adjustment of the 
apparatus. 



 

Figure 9: Circuit for parametric excitation in a system with regeneration 

 

halved-frequency oscillations in a regenerative system due to A-C current pulses induced by 
some field (e.g. the terrestrial magnetic field) in the teeth during rotation of the disk and 
giving rise to emf’s with parameter variation frequency (example of resonance of the second 
kind). Thus, while for example the maximum current in the circuit during self-excitation was 
only 9 ma with a constant anode current component            , in heteroparametric 
excitation it reached 40 ma with         . Hence power was supplied to the circuit not by 
the battery supplying the tube as in the case of autoparametric excitation, but by the disk, 
owing to variation of self-inductance.  

Figure 10 shows the dependence of the amplitude of oscillations appearing during 
parameter variation on detuning of the oscillatory system. Since here         , and auto-
oscillations occurred only in the   interval of 77 to 93 

 

* Translator's note: ? 

 

no self-excitation occurred in the whole region of parametric excitation. When the motor 
was stopped or the disk velocity exceeded the limits of parametric excitation the oscillations 
stopped as well. Over the whole extent of the parametric resonance curve the oscillation 
frequency was constant and exactly equal to half of the parameter-variation frequency (n) 

[7 times the disk revolutions per second]. The measurements were conducted by ear, using 
a Siemens and Halske frequency meter. 

 



 

Figure 10: Experimental heteroparametric excitation curve in a system with regeneration 

 

Apart from the duralumin disk, we tried a disk made of iron, having the same shape but only 
2 mm thick. No parametric excitation occurred, even though the stator coils were moved 
closer to one another (4 mm gap) to concentrate the field. A control measurement of the 
depth of modulation showed that as could be expected the iron disk acting as iron in the 
direction of increasing L or the one hand, and as a metal in the direction of decreasing L, on 
the other hand, gave a very much smaller variation in the self-induction, causing at the same 
time large losses in the system. 

Having established the occurrence of heteroparametric excitation in a regenerative system, 
we turned to systems without regeneration. For this purpose we modified the stator coils; 
the core (transformer iron) was made longer (2.2 cm in diameter, 6.5 cm long) and the wire 
in the coil windings was made thicker (0.9 mm in diameter)*. 

 

*Translator's note: in the original it is unclear whether the 0.9 mm refers to the old or to the 
new wire diameter 

 



 

Figure 11: Circuit for parametric excitation in a system without regeneration 

 

As a result of these measures we increased the coil field concentration, and thus enhanced 
the depth of modulation of self-inductance (to 14.5%), and also decreased very appreciably 
the ohmic losses in the circuit (the stator coil resistance was reduced from: 84.5 to 21 
ohms). Since   was then ~ 0.14, the condition given by (*) was satisfied and we could expect 
that parametric excitation will occur even without regeneration. In point of fact, when the 
oscillatory system (Figure 11), in which there were no explicit current or voltage sources, 
was tuned with capacitor    to a frequency equal to or close to half of the parameter-
variation frequency, strong oscillations arose in the system, having a frequency equal 
exactly to one half of the variation frequency of the self-inductance. The amplitude of these 
oscillations increased rapidly until the insulation of the capacitors or the leads broke down. 
In our experiments the voltage reached 12,000-15,000V. To attain a stationary regime it was 
necessary in agreement with theory, to introduce into the system a conductor having a 
nonlinear characteristic. In the initial experiments, as such a conductor we used a group of 
100 W incandescent lamps, which could be brought into the oscillatory circuit in parallel 
(Figure 11). The circuit's capacitance comprised 17-20 capacitors (2    each) connected in 
series, in parallel with which was connected a variable oil capacitor    (11,200 cm) in series 
with a constant capacity of 3000 cm.  

 

The maximum and minimum self-inductances of the stator coils were: 

                            

The lamp resistor served as a load, and for a smoother adjustment of the resistance brought 
into the circuit we also incorporated a rheostat R. Coarse tuning was carried out by changing 
the number of the in-series capacitors and fine tuning by means of the oil capacitor. In view 
of the considerable variations of the mains voltage supplying the motor, the disk speed too 
varied appreciably necessitating frequent retuning, since the variable capacitor only allowed 
a small adjustment of the circuit frequency. This complicated the work quite considerably, 
and made it impossible to conduct all the measurements with this setup. 



Out of the experiments carried out, we shall mention the following first of all, it must be 
said that the introduction of incandescent lamps did in fact make it possible to produce and 
regulate the stationary oscillation amplitude within wide limits (up to 5a, since the motor 
power and the coil leads cross-section did not allow a greater load). However, thermal 
inertia of the incandescent filaments results in a remarkable amplitude build-up 
phenomenon in which the amplitude increases not gradually but in waves: the lamps burn 
in turn more strongly and more weakly. This phenomenon, often associated with strong 
over voltages, sometimes lasts for several minutes, though it may be largely avoided by a 
suitable choice of the system's regime. It may also be noted that in the subsequent 
experiments, carried out in the following year, which are described in detail in the following 
paper by V.A.Lazarev, we used a more convenient and improved method of regulating the 
stationary amplitude, based on utilization of the nonlinear relationship existing between the 
magnetic flux and the current in a special choke introduced into the oscillatory circuit. 

 

Figure 12: Resistance-dependence of the amplitude of the voltage on the capacitor 

Below we give some results of measurements carried out with incandescent lamps as the 
load. The dependence of amplitude of the voltage on the capacitor on resistance introduced 
into the system (Figure 12) shows that the voltage decreases smoothly as the load is 
increased. The oscillations break off when the introduced resistance amounts to 28 ohms. 
Taking this as the limiting value and allowing for all other losses in the system, i.e. the 
resistance of the coil windings, losses in the duralumin disk, losses in the iron, and dielectric 
losses in the capacitors, we obtain the logarithmic decrement c of the resonance oscillations 
of the system as around 0.20. 



Since the depth of modulation of the self-inductance measured under these conditions 

proved to be 0.14, the excitation condition   (
 

 
)   is still just satisfied.  

Further, more detailed experiments were conducted with another apparatus, in which the 
system of stator coils was modified to increase the modulation to 40% and the power to 
4kv. The coils were wound from thicker wire on almost closed cores from split iron. These 
experiments confirming both qualitatively and quantitatively the theoretical conclusions are 
described in detail in the already mentioned paper by V.A.Lazarev. We shall only mention 
here that in addition to the duralumin disk we used a copper disk obtaining much the same 
results. 

 

We have already reported in this journal experiments on exciting electric oscillations by 
periodic variation of the capacitance of an oscillatory system, which were also in agreement 
with theoretical expectations. 

In conclusion, we should like to thank I.M.Borushko and V.A.Lazarev, for their considerable 
participation in the work described in this paper. 
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